
K-mer counting, cardinality
estimation, Approximate

Membership Query (AMQ) data
structures & perfect hashes

Scalability at the forefront
I’ve spoken a lot in this class about the need for scalable
solutions, but how big of a problem is it?

Take (one of) the simplest problems you might imagine:

Given: A collection of sequencing reads S and
 a paramater k

Find: The multiplicity of every length-k substring
 (k-mer) that appears in S

This is the k-mer counting problem

k-mer counting

A large number of recent papers tackle this (or a closely
related) problem:

Tallymer, Jellyfish, DSK, KMC{1,2,3}, BFCounter,
scTurtle, Girbil, KAnalyze, khmer, … and many
more

How might we count k-mers
A naive approach:

S ATACAGGACGTTC

While S is non-empty:
Draw a string s, from S
For every k-mer, k in s:

counts[k] += 1

ATA

TAC

What’s wrong with this approach?
Speed & Memory usage
Routinely encounter datasets with 10 - 100 x 109 nucleotides

On the order of 1-10 x 109 or more distinct k-mers

If we used a 4-byte unsigned int to store the count, we’d
be using 40GB just for counts

But, hashes have overhead (load factor < 1), and often
need to store the key as well as the value

Easily get to > 100GB of RAM

Just hashing the k-mers and resolving collisions takes time

Smart, parallel hashing actually pretty good
If we put some thought and engineering effort into the
hashing approach, it can actually do pretty well. This
is the insight behind the Jellyfish program.

Massively parallel, lock-free, k-mer counting
— most parallel accesses won’t cause a collision

Efficient storage of hash table values
— bit-packed data structure
— small counter with multiple entries for

 high-count k-mers
Efficient storage of keys

— f: Uk → Uk, and let hash(k) = f(k) mod M
— Can reconstruct k from pos in hash table (quotient) and

 remainder.

Smart, parallel hashing actually pretty good
Efficient storage of keys

— f: Uk → Uk, and let hash(k) = f(k) mod M

— Can reconstruct k from pos in hash table (quotient, q) and
 remainder, r. The quotient is simply encoded as the

 position.

— recall: we can represent f(k) as f(k) = qM + r

— Extra work must be done since collisions can occur

— For a general coverage of this idea, see the Quotient Filter
data structure by Bender et al. (2011)

"Don't thrash: how to cache your hash on flash" (PDF). Proceedings of the 3rd USENIX conference on Hot topics in storage and file systems (HotStorage'11). Retrieved 21 July 2012.

http://static.usenix.org/events/hotstorage11/tech/final_files/Bender.pdf

Memory usage of Jellyfish

suffix array-based
approach

Runtime of Jellyfish

System utilization of Jellyfish

Even bigger data
For very large datasets, even this approach may use
too much memory. How can we do better?

Even bigger data
For very large datasets, even this approach may use
too much memory. How can we do better?

Solve a different (but closely-related) problem

What if we just wanted “approximate” counts?

What if we just want to know “if” a k-mer is present?

Bloom Filters
Originally designed to answer probabilistic membership
queries:

Is element e in my set S?

If yes, always say yes

If no, say no with large probability

False positives can happen; false negatives cannot.

Bloom Filters

For a set of size N, store an array of M bits
Use k different hash functions, {h0, …, hk-1}
To insert e, set A[hi(e)] = 1 for 0 < i < k

To query for e, check if A[hi(e)] = 1 for 0 < i < k

Image by David Eppstein - self-made, originally for a talk at WADS 2007

Bloom Filters

Image by David Eppstein - self-made, originally for a talk at WADS 2007

If hash functions are good and sufficiently
independent, then the probability of false positives is
low and controllable.

How low?

False Positives

*analysis of Mitzenmacher and Upfal

Let q be the fraction of the m-bits which remain as 0 after n
insertions.

The probability that a randomly chosen bit is 1 is 1-q.

But we need a 1 in the position returned by k different hash
functions; the probability of this is (1-q)k

We can derive a formula for the expected value of q,
for a filter of m bits, after n insertions with k different hash
functions:

E[q] = (1 - 1/m)kn

False Positives

*analysis of Mitzenmacher and Upfal

Mitzenmacher & Unfal used the Azuma-Hoeffding
inequaltiy to prove (without assuming the probability of
setting each bit is independent) that

Pr(|q � E [q]| � �

m
) 2exp(�2

�2

m
)

That is, the random realizations of q are highly
concentrated around E[q], which yields a false positive
prob of:
X

t

Pr(q = t)(1� t)k ⇡ (1� E[q])k =

1�

1� 1

m

�kn!k

⇡ (1� e�
kn
m)k

False Positives
X

t

Pr(q = t)(1� t)k ⇡ (1� E[q])k =

1�

1� 1

m

�kn!k

⇡ (1� e�
kn
m)k

This lets us choose optimal values to achieve a target false
positive rate. For example, assume m & n are given. Then we
can derive the optimal k

k = (m/n) ln 2 ⇒ 2-k ≈ 0.6185 m/n

We can then compute the false positive prob

p = (1� e�(m
n ln 2) n

m)(
m
n ln 2) =)

ln p = �m

n
(ln 2)2 =)

m = � n ln p

(ln 2)2

False Positives
X

t

Pr(q = t)(1� t)k ⇡ (1� E[q])k =

1�

1� 1

m

�kn!k

⇡ (1� e�
kn
m)k

This lets us choose optimal values to achieve a target false
positive rate. For example, assume m & n are given. Then we
can derive the optimal k

k = (m/n) ln 2 ⇒ 2-k ≈ 0.6185 m/n

We can then compute the false positive prob

p = (1� e�(m
n ln 2) n

m)(
m
n ln 2) =)

ln p = �m

n
(ln 2)2 =)

m = � n ln p

(ln 2)2

given an expected
elems

and a desired
false positive rate

we can compute
the optimal size and

of has functions

Cardinality Estimation
Consider a “simpler” problem than indexing, or
even k-mer counting:

Given: A collection of sequencing reads S and
 paramater k and t.

Find: The number of k-mers that occur 1 time, 2
 times, …, t times.

This is the k-mer cardinality estimation problem

Cardinality Estimation
There is the hope that we can solve this
(approximately) very efficiently.

Why: We need not record information for each
 distinct k-mer, the output is simply a vector
 of length t.

We’ll discuss one particular approach for
solving this, introduced in ntCard

let fi be the number of distinct k-mers that appear i times
frequency histogram is list of fi, i ≥ 1

Define k-th frequency moment as Fk =
∞

∑
i=1

ik ⋅ fi

Goal: Estimate the , usually only care about
 smallish maximum i (e.g. 64).

fi

Basic idea: Hash the k-mers

Use these bits to sub-sample
input data “uniformly”. Only

process a k-mer if uppermost
s bits are 0. Sub-sampling

at a rate of

Maintain an array
of size 2r and, count

the number of occurrences
of each r-bit pattern

2r

1
2s

2r

When we encounter a k-mer’s hash:

If the uppermost s bits are 0

Then we increment the count in the cell determined by
the lowermost r bits

00100000000000

The true cardinality histogram is the histogram we would
have if we used r=∞. Clearly, we can’t do this, so we will
instead estimate that value given a fixed, finite r.

t(r) array holding counts

We want to estimate t(∞), what is the relationship
between t(r) and t(r+1)?

where denotes the count for entry n in table t(r)t(r)
n

Let be the relative frequency (probability) of count
 in table t(r)

p(r)
i i ≥ 0

Observe: t(r)
i = 0 iff t(r+1)

i t(r)
2r+i= 0 and = 0

Mohamadi, Hamid, Hamza Khan, and Inanc Birol. "ntCard: a streaming algorithm for cardinality estimation in genomics data." Bioinformatics 33.9 (2017): 1324-1330.

Assuming distributions in both half of t(r+1) are the same

pr
0 = (p(r+1)

0)2

relates the frequencies of 0 counts in t(r) to t(r+1)

Similarly, a count of 1 in tn(r) can happen only if

t(r)
n = 0 and t(r)

2r+n = 1

t(r)
n = 1 and t(r)

2r+n = 0

or

We can express this mathematically as:

p(r)
1 = 2p(r+1)

0 p(r+1)
1

(eq 6)

(eq 7)
Mohamadi, Hamid, Hamza Khan, and Inanc Birol. "ntCard: a streaming algorithm for cardinality estimation in genomics data." Bioinformatics 33.9 (2017): 1324-1330.

This rule can be generalized

 (eq 8)

This tells us how to go from r to r+1, we want to
compute these values for r+x as x → ∞

Mohamadi, Hamid, Hamza Khan, and Inanc Birol. "ntCard: a streaming algorithm for cardinality estimation in genomics data." Bioinformatics 33.9 (2017): 1324-1330.

we will call our estimates ̂fi

Mohamadi, Hamid, Hamza Khan, and Inanc Birol. "ntCard: a streaming algorithm for cardinality estimation in genomics data." Bioinformatics 33.9 (2017): 1324-1330.

UGLY!

Mohamadi, Hamid, Hamza Khan, and Inanc Birol. "ntCard: a streaming algorithm for cardinality estimation in genomics data." Bioinformatics 33.9 (2017): 1324-1330.

Mohamadi, Hamid, Hamza Khan, and Inanc Birol. "ntCard: a streaming algorithm for cardinality estimation in genomics data." Bioinformatics 33.9 (2017): 1324-1330.

We can also estimate the 0th order moment as
F0 = lim

x→∞
2s(1 − p(r+x)

0)2r+x = − 2s+r ln p(r)
0

together with the , this is enough to compute all we want̂fi

Mohamadi, Hamid, Hamza Khan, and Inanc Birol. "ntCard: a streaming algorithm for cardinality estimation in genomics data." Bioinformatics 33.9 (2017): 1324-1330.

Results

Captures the whole histogram well

The ntCard algorithm is fast

The memory usage of ntCard on all 3 datasets is ~500MB

Open challenge: Can we solve this problem sub-linearly
(without looking at all input k-mers)?

The quotient filter for exact & approximate
counting

The Counting Quotient Filter

Compact, lossless representation of multiset h(S)

h : U → {0,…,2p-1} is a hash function, S is multiset,
U is the universe from which S is drawn

x ∈ S, h(x) is a p-bit number.

Q is an array of 2q r-bit slots

The quotient filter divides h(x) into q(h(x)), r(h(x));
the first q and remaining r bits of h(x) where p=q+r

Put r(h(x)) into Q[q(h(x))]

The Counting Quotient Filter (CQF)
Approximate Multiset Representation

Works based on quotienting* & fingerprinting keys

Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2r-1; smaller values ⇒ fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

Let k be a key and h(k) a p-bit hash value

h(k) }
q-bits

}
r-bits

p-bits
=

* Idea goes back at least to Knuth (TACOP vol 3)

The Counting Quotient Filter (CQF)
Approximate Multiset Representation

Works based on quotienting* & fingerprinting keys

Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2r-1; smaller values ⇒ fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

Let k be a key and h(k) a p-bit hash value

h(k) }
q-bits

}
r-bits

p-bits
=

* Idea goes back at least to Knuth (TACOP vol 3)

Determines position in
array of size 2 r-bit slotsq

The Counting Quotient Filter (CQF)
Approximate Multiset Representation

Works based on quotienting* & fingerprinting keys

Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2r-1; smaller values ⇒ fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

Let k be a key and h(k) a p-bit hash value

h(k) }
q-bits

}
r-bits

p-bits

Value stored in
r-bit slot (fingerprint)

=

* Idea goes back at least to Knuth (TACOP vol 3)

Determines position in
array of size 2 r-bit slotsq

The Counting Quotient Filter
In reality, a bit more complicated because collisions
can occur. What if Q[q(h(x))] is occupied by some
other element (as the result of an earlier collision)?

Move along until you find the next free slot.
Metadata bits allow us to track “runs” and skip
elements other than the key of interest efficiently.

The Counting Quotient Filter
How to count?

Rather than having a separate array for counting (a
la the counting Bloom filter), use the slots of Q
directly to encode either r(h(x)), or counts!

The CQF uses a somewhat complex encoding
scheme (base 2r-2), but this allows arbitrary
variable length counters.

This is a huge win for highly-skewed datasets with
non-uniform counts (like most of those we
encoutner).

The Counting Quotient Filter, results

false pos. rate

load factor

The Counting Quotient Filter, results

The Counting Quotient Filter, results

The Counting Quotient Filter, results

Squeakr, applying the CQF to k-mer counting
Counting Memory

Squeakr, applying the CQF to k-mer counting
Counting performance

Squeakr, applying the CQF to k-mer counting
Query performance

(Minimum) Perfect Hash Functions
We’ve been using the idea of hashing a lot in this lecture.

One class of hash functions that are particularly interesting
are Minimum Perfect Hash Functions (MPHF).
S : set of keys

f : S →{1,2,…|S|} s.t.

∀ u,v ∈ S, u ≠ v then f(u) ∈ {1,2,…|S|}  
 and f(v) ∈ {1,2,…|S|} and f(u) ≠ f(v)

In other words. f is an injective function from S to the
integers 1..|S| (or 0..|S|-1) such that every element of S maps
to some distinct integer.

Note: for x ∉ S, no property is guaranteed about f(x)

Domain (e.g. keys)

all possible keys

Range (e.g. [0, m|D|])

im
ag

e

Hash
maps elements from the domain

into the range

collisions - different keys with same value

Key: We know meaningful sub-patterns ahead of time

Construction of a Perfect Hash Index

Domain (e.g. keys)

all possible keys

Range (e.g. [0, m|D|])

im
ag

e

Hash
maps elements from the domain

into the range

collisions - different keys with same value

Perfect

Keys on which
f is constructed
Keys on which
f is constructed

Key: We know meaningful sub-patterns ahead of time

Construction of a Perfect Hash Index

Domain (e.g. keys)

all possible keys

Range (e.g. [0, m|D|])

im
ag

e

Hash
maps elements from the domain

into the range

collisions - different keys with same value

Perfect
Minimal

maps keys to distinct integers in [0, |D|-1]

Keys on which
f is constructed
Keys on which
f is constructed

Key: We know meaningful sub-patterns ahead of time

Construction of a Perfect Hash Index

Domain (e.g. keys)

all possible k-mers

Range (e.g. [0, m|D|])

im
ag

eHash function
maps elements from the domain

into the range

no collisions - every key maps to its own value

maps keys to distinct integers in [0, |D|-1]

Key: We know meaningful sub-patterns ahead of time
Construction of a Perfect Hash Index

Minimal
Perfect

Keys on which
f is constructed

(Minimum) Perfect Hash Functions

We’ll talk about BBhash. My favorite algorithm for minimal
perfect hash construction. It’s not the most sophisticated
algorithm in the literature, but it is by-far the most practical.

Observation: often MPHF are used to map keys (not stored) to
values (stored). The set of values is often much larger, per-
element than the MPHF. It’s worth spending a few more bits per-
element on the MPHF if we can construct it efficiently

https://github.com/rizkg/BBHash

https://github.com/rizkg/BBHash

Minimum Perfect Hash Functions

Theoretical minimum is log2(e)N ≈ 1.44N bits / key
(regardless of # of keys).

Best methods, in practice, provide just under ~3 bits/key.

This approach provides a parameter 𝛾 to trade off between
construction speed and final MPHF size and query time.

Successive hashing for construction

For a set of keys F0 construct a bit-array of size A0 = |F0|.

Insert the keys into A0 using hash function h0()

A0[i] = 1 if exactly one element from F0 hashes to i

For all keys that collide under h0(), create a new key set F1
of size |F1|

Create a corresponding new bit vector A1.

Repeat this process until there are no collisions.

In practice: Repeat this process until Fk is sufficiently
small, and use a traditional hash table to store it.

Successive hashing for construction

Detecting Collisions

Querying & Minimality

Tradeoff with the 𝛾 parameter

Tradeoff with the 𝛾 parameter

Comparison with other MPHF schemes

Comparison with other MPHF schemes

Take-home message

The sheer scale of the data we have to deal with makes
even the most simple tasks (e.g. counting k-mers) rife with

opportunities for the development and application of
interesting and novel data structures and algorithms!

